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Chapter 8

Techniques of Integration



3.1

Basic Integration Formulas



TABLE 8.1 Basic integration formulas

1./du=u+C

> w0

\\\\\\\\\

h

10.

11.

12.

/ kdu = ku + C (any number k)

/(du+dv) /du+/dv

udu:n+1 C (n # —1)
%=ln|u| + C
sinudu = —cosu + C

cosudu = sinu + C
secudu = tanu + C
csc’udu = —cotu + C
secutanudu = secu + C
cscucotudu = —cscu + C

tanudu = —In |cosu| + C

= In |secu| + C

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

au

Ina

a'du =

— e —— Y~

e'du=¢e"+ C

+ C (a

sinhudu = coshu + C

coshudu = sinhu + C

[t
22 — 42 a

aZ + M2 a a

/?Z

cotudu = In |sinu| + C

= —In|cscu| + C

>0,a #1)

+C




TABLE 8.2 The secant and cosecant integrals

1. /secuduz In |secu + tanu| + C

2. /cscudu = —In |cscu + cotu| + C




Procedures for Matching Integrals to Basic Formulas

PROCEDURE

Making a simplifying
substitution

Completing the square

Using a trigonometric
identity

Eliminating a square root

Reducing an improper
fraction

Separating a fraction

Multiplying by a form of 1

2x

EXAMPLE

—9 du

dx =

Vx? = 9 + 1 Viu
V8x — x2 = V16 — (x — 4)?

(secx + tanx)? =

V1 + cosdx =

3x% — 7x

3x + 2

3x + 2

sec’x + 2secxtanx + tan®x
sec’x + 2secxtanx
+ (sec’x — 1)

2sec’x + 2secxtanx — 1

V2cos22x = V2 |cos 2x|

6

=x_3+3x+2

\/l—xz_

SCCX =

3x n 2
V1 — x? V1 — x?
_secx + tanx
secx + tanx

SCC X

. sec’x + sec x tanx

secx + tanx




3.2

Integration by Parts



/ f)g () dx = f(x)g(x) — f £(x)g ) dx ()

Integration by Parts Formula

/u,dv= uv —/vdu (2)

Integration by Parts Formula for Definite Integrals

b b
/ f)g'(x) dx = f(x)gx)]) — / F(x)g(x) dx (3)




FIGURE 8.1 The region in Example 6.



EXAMPLE 8  Using Tabular Integration

Evaluate
/ x> sinx dx.

Solution ~ With f(x) = x> and g(x) = sinx, we list:

f(x) and its derivatives g2(x) and its integrals
x> \ (+) sin x
3x? — (—) ™ _Ccosx
6x ™M (+) ™ —sin x
-
6 (—) COS X
\
0 —— SinXx

Again we combine the products of the functions connected by the arrows according to the
operation signs above the arrows to obtain

/x3 sinxdx = —x°>cosx + 3x%sinx + 6xcosx — 6sinx + C.



3.3

Integration of Rational Functions by
Partial Fractions



Method of Partial Fractions (f(x)/g(x) Proper)

1.

Let x — r be a linear factor of g(x). Suppose that (x — )" is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the
m partial fractions:

T ="

Do this for each distinct linear factor of g(x).

Let x> + px + g be a quadratic factor of g(x). Suppose that (x> + px + g)"
is the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the » partial fractions:

le + C1 n Bzx + C2 n n an + Cn
x> +px+qg 2+ px+g)P (x> + px + ¢)*
Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.




Heaviside Method

1. Write the quotient with g(x) factored.:

fx) _ f(x)
glx) (x—r)x—r) -x-—r)

2. Cover the factors (x — r;) of g(x) one at a time, each time replacing all the
uncovered x’s by the number ;. This gives a number 4; for each root 7;:

_ f(r1)
S P, Sy P

_ f(r2)
S P T A, Y p—
. £(r)

(rn = r))(rn = r2) -+ (rn = 1p=1)
3. Write the partial-fraction expansion of f(x)/g(x) as

f(x) _ Al A2 An
) G- Gorn TG




3.4

Trigonometric Integrals



Products of Powers of Sines and Cosines

We begin with integrals of the form:

/ sin” x cos” x dx,

where m and » are nonnegative integers (positive or zero). We can divide the work into
three cases.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sinx = 1 — cos®x to
obtain

2k+1

sin”x = sin?*"!x = (sin®x)*sinx = (1 — cos®x)¥sinx. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to —d (cos x).

Case 2 Ifmiseven and » is odd in f sin” x cos” x dx, we write n as 2k + 1 and use the
identity cos’x = 1 — sin’x to obtain

2 K

2kl x)*cos x.

cos"x = cos? 1 x = (cos’x)*cosx = (1 — sin
We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 Ifboth m and » are even in f sin” x cos” x dx, we substitute

sin? x = 1 — gos 2x9 costx = 1 + gos 2x )

to reduce the integrand to one in lower powers of cos 2x.




8.5

Trigonometric Substitutions



a az—xz a

x=atan @ xX=asin@ x=asechb

Va? + x* = alsec8] Va?— x*= alcos 6| V x* — a* = altan 0|

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.

X

—da



A
o
2
-1 X
@ = tan 5 x
0 “a
_T
2
7]
A
;_r_ =Sin_1§
| | E
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_m
2
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T
el X
-J 6 =sec” 7
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2

FIGURE 8.3 The arctangent, arcsine, and
arcsecant of x/a, graphed as functions of

x/a.



FIGURE 8.4 Reference triangle for
x = 2tan 0 (Example 1):

—1
tan9—2

and

4 + x*
5 :

sech =



0 — x2

FIGURE 8.5 Reference triangle for
x = 3 sin 6 (Example 2):

sinf =

W | ¢

9 — x?
3 .

cos @ =



X[ 14/25x2 — 4

6
2

FIGURE 8.6 Ifx = (2/5)sec9,

0 <60 < m/2,thenf = sec”' (5x/2), and
we can read the values of the other
trigonometric functions of 6 from this right
triangle (Example 3).



(a) (b)

FIGURE 8.7 The region (a) and solid (b) in Example 4.



x* + 4

FIGURE 8.8 Reference triangle for

x = 2tan 0 (Example 4).
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FIGURE 8.9 The ellipse

Example 5.



3.6

Integral Tables and
Computer Algebra Systems



EXAMPLE1 Find

/x(2x + 5) ldx.
Solution We use Formula 8 (not 7, which requires n # —1):
—1 X b
/x(ax—l—b) dx =7 — —In|ax + b| + C.
a
Witha = 2and b = 5, we have

/x(Zx + S)Idx=%—%ln|2x+ 5| + C.



EXAMPLE 2  Find

dx
vt
Solution We use Formula 13(b):
d  _ 'VET_— .
[/ S A
Witha = 2 and b = 4, we have
/ dc  _ 11‘VE:]—\f|
NV2x +4 V4 2x + 4

:llyVh+4—2
25 Voax + 4+ 2

+ C.



EXAMPLE 3 Find

dx
/x\/Zx—4'

Solution We use Formula 13(a):

/ dx = ztan_lq/ax_bﬂLC
xVax —b Vb b

Witha = 2 and b = 4, we have

dx 2 -1 2x — 4 -1 X — 2
= tan + C = tan + C.
/x\/2x—4 V4 N4 N 2




EXAMPLE 4 Find

dx
/ V2 — 4
Solution ~ We begin with Formula 15:

/ dx =_\/ax+b_a/ dx L C
>Vax + b bx 2b) Nax + b

Witha = 2and b = —4, we have

/ de  _ _NVx-—-4 2/ & | -
x*V2x — 4 —4x 2:4) x\V2x — 4

We then use Formula 13(a) to evaluate the integral on the right (Example 3) to obtain

/ dx = 2)C_'él—l—ltan_1 x_2+C
2\V2x — 4 4x 4 2



EXAMPLE 5  Find

/ xsin ' xdx.
Solution We use Formula 99:

n+1 nt+l
. X . a x" dx
/x”sm'axde sin"!ax — n#—1.

n+1 n—+1 “/l—azxf

Withn = 1 anda = 1, we have

x2 1 1 [ x“dx 2 dx
xsin'xdx = = sin” x——

2 V1 — x?
The integral on the right is found in the table as Formula 33:
2 2
X _at . af(x)_1 /2 _ 2
/—a2 _xzdx 5 sin (a) 7X¥Va x° + C.
Witha = 1,
2
x“dx 1 . _ 1 )
Voo 5 Sin - x 2x\/1 x-+ C.

The combined result is

2
/xsin_lxdx = %sin_lx — % (%sin_lx — %x\/l —x* + C)

4

= %2 l)Sin_l}c+%x\/1—ch-|-C’.



EXAMPLE 6  Using a Reduction Formula

Find
/ tan® x dx.

Solution We apply Equation (1) with n = 5 to get

/tansxdx = itan‘*x — /tan3xdx.

We then apply Equation (1) again, with n = 3, to evaluate the remaining integral:
3 _1. 2 I
tan’ xdx = S tan"x — | tanxdx = - tan x + In |cosx| + C.

The combined result is

/tansxdx = %tan"x — %tanzx — In |cosx| + C'.



EXAMPLE 7  Deriving a Reduction Formula

Show that for any positive integer n,

/(lnx)”dx = x(Inx)" — n/ (Inx)" ! dx.

Solution We use the integration by parts formula
/udv=uv—fvdu

dx

u = (Inx)", du = n(lnx)" ! Y dv = dx,

with

to obtain

/(lnx)” dx = x(Inx)" — n/ (Inx)" ! dx.



EXAMPLE 8 Find

/ sin” x cos® x dx.

Solution 1 We apply Equation (3) withn = 2 and m = 3 to get

- 4
. 2 3 _ _sinxcos’x 1
/smxcosxdx > ¥ 3 —+—2_|_3

/ sin® x cos> x dx

: 4
= — smx;:os 24 é/ cos® x dx.

We can evaluate the remaining integral with Formula 61 (another reduction formula):

n—1 .
cos” ‘ax sin ax n—1 _
/cos”ax dx = na + — fcos" 2ax dx .

Continued on next slide



Withn = 3anda = 1, we have

2 .
in
/cos3xdx = W + %/ cos x dx

_ cos’xsinx , 2

3 + Esinx + C.
The combined result is

sin?x cos? xdx = — SRXCOS X 1 (cos”xsinx + zsinx + C

5 5 3 3

. 4 2 .

SIN X COS" X cos“xsinx 2 .

= — + + = + I.
5 15 15 sinx + C

Solution 2 Equation (3) corresponds to Formula 68 in the table, but there is another
formula we might use, namely Formula 69. With a = 1, Formula 69 gives

s ntl m—1
. sin"" "xcos" 'x  m — 1 . _
/sm”x cos"x dx = + /sm"xcosm 2xdx.

m-+ n m+ n

In our case, n = 2 and m = 3, so that

3 2

. sin” x cos” x 2 .
fs1n2xcos3xalx ==z §/ sin? x cos x dx

.3 2 . 3
sin” x cos” x 2 {sin’x

.3 2
— ST XCOS X xscos LAt %shﬁx + C.
As you can see, it is faster to use Formula 69, but we often cannot tell beforehand how
things will work out. Do not spend a lot of time looking for the “best” formula. Just find
one that will work and forge ahead.
Notice also that Formulas 68 (Solution 1) and 69 (Solution 2) lead to different-
looking answers. That is often the case with trigonometric integrals and is no cause for
concern. The results are equivalent, and we may use whichever one we please.



8.7

Numerical Integration



y=fx)

Trapezoid area
(1 + y2)Ax

S

/ 1 Y2 Yn—1 |Vn
> X
Xg=a Xx Xy lTl Xyp—1 X,=0b
X

FIGURE 8.10 The Trapezoidal Rule approximates short
stretches of the curve y = f(x) with line segments. To
approximate the integral of f from a to b, we add the areas
of the trapezoids made by joining the ends of the segments
to the x-axis.



The Trapezoidal Rule
To approximate |, ® £(x) dx, use

T:Azx(yo + 2y1 + 2_]/2 +"'+2yn—1 +yn)-

The y’s are the values of f at the partition points

xo=ax1=a+ Ax,x,=a+2Ax, ....,x,-.1=a+ (n— 1)Ax,x, = b,
where Ax = (b — a)/n.




o

25
16

36
16

49
16

TABLE 8.3

x y = x?
1 1

S 25

4 16

6 36

4 16

7 49

4 16

2 4

FIGURE 8.11 The trapezoidal

approximation of the area under the graph
tox = 2 is a slight

of y = x* fromx = 1

overestimate (Example 1).




The Error Estimate for the Trapezoidal Rule

If f” is continuous and M is any upper bound for the values of |f”| on [a, b],
then the error E7 in the trapezoidal approximation of the integral of f from a to b
for n steps satisfies the inequality

M(b — a)’

Erl <
|Ex] 1212




y=xs8inx

FIGURE 8.12 Graph of the integrand in
Example 3.



g

FIGURE 8.13 The continuous function
y = 2/x° has its maximum value on [1, 2]
atx = 1.



FIGURE 8.14 Simpson’s Rule
approximates short stretches of the curve
with parabolas.

Parabola / /y — f(x)
Yo| Yi| Y2 In—1| Yn
h | h
> X
Ola=xy x; x I<h> x,_1 x,=Db



(07 y])

(~h, yo) ~ | >Un32)

/ X=Ax2+8x+c

Yo Y1 Y2

—h 0 h

FIGURE 8.15 By integrating from —#4 to
h, we find the shaded area to be

h
5(}/‘0 + 4y + y2).



Simpson’s Rule
To approximate j;b f(x) dx, use

_ Ax

S = T(yo + 4y1 + 2y2 + 4y3 + et zyn—Z + 4an—1 + yn)-

The y’s are the values of f at the partition points

Xo=a,x1=a+ Ax,x, =a+2Ax, ...,x,—-1 =a + (n — 1)Ax,x, = b.
The number # is even, and Ax = (b — a)/n.




TABLE 8.4

X y = 5x*
0 0

1 S

2 16

1 5

30 405

2 16

2 80

EXAMPLE 5  Applying Simpson’s Rule
Use Simpson’s Rule with n = 4 to approximate f02 5x* dx.

Solution Partition [0, 2] into four subintervals and evaluate y = 5x* at the partition
points (Table 8.4). Then apply Simpson’s Rule with n = 4 and Ax = 1/2:

A
SZTx(y0+4y1+2y2+4y3 +y4)

_ 1 5 405
=< (0 + 4(3) + 2(5) + 4(?) + 80)

1
32 1

This estimate differs from the exact value (32) by only 1/12, a percentage error of less
than three-tenths of one percent, and this was with just four subintervals.



The Error Estimate for Simpson’s Rule
If f(4) is continuous and M is any upper bound for the values of | f(4)| on [a, b],
then the error Es in the Simpson’s Rule approximation of the integral of f from a

to b for n steps satisfies the inequality

M(b — a)’

Eql =
|Es] 180n*




TABLE 8.5 Trapezoidal Rule approximations (7,) and Simpson’s Rule

approximations (S,) of In2 = ff (1/x) dx

| Error| |Error|

n T, less than. .. S, less than. ..

10 0.6937714032 0.0006242227 0.6931502307 0.0000030502

20 0.6933033818 0.0001562013 0.6931473747 0.0000001942

30 0.6932166154 0.0000694349 0.6931472190 0.0000000385

40 0.6931862400 0.0000390595 0.6931471927 0.0000000122

50 0.6931721793 0.0000249988 0.6931471856 0.0000000050
100 0.6931534305 0.0000062500 0.6931471809 0.0000000004




146 ft
122 ft

=
- \
ol =
g = Ignored
(]
\ 2

Horizontal spacing = 20 ft

FIGURE 8.16 The dimensions of the
swamp in Example 9.



3.8

Improper Integrals



r

0.2+ Yy="7

FIGURE 8.17 Are the areas under these infinite curves finite?



A
\ Area = 2
> X
(@)
y
A
\ Area = =2 %2 4+ 2

(b)

FIGURE 8.18 (a) The area in the first
quadrant under the curve y = e /2 is
(b) an improper integral of the first type.



DEFINITION Type I Improper Integrals
Integrals with infinite limits of integration are improper integrals of Type I.

1. If f(x) is continuous on [a, ©©), then

/Oof(X)dx = bli)rgofbf(X)dx-

2. If f(x) is continuous on (—09, b], then

b b
f fxydx = lim_ f f(x) d.

3. If f(x) is continuous on (—00, 00), then

/mf(x)dx - f Fx) dx + /Oof(x)dx,

where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.




y
A

0.2 y=10x
X
0.1
> X

FIGURE 8.19 The area under this curve
1s an improper integral (Example 1).



NOT TO SCALE

FIGURE 8.20 The area under this curve
is finite (Example 2).



EXAMPLE 3  Determining Convergence

For what values of p does the integral floo dx/x? converge? When the integral does con-
verge, what is its value?

Solution Ifp#1,

(S AN (S W SN B (5 S
 x¥ —p+1], 1-p 1 —p\pr! '

Thus,
DO—: lim b@
X pseof, A
1 1 1 , p=>1
—bllrr;OIpr_l—l =qp—1
- d 00, p<l1
because
. 1 {0, p>1
lim — =
b—00 bp 1 OO, P < 1.

Therefore, the integral converges to the value 1/(p — 1) if p > 1 and it diverges if
p<1.
If p = 1, the integral also diverges:

oo@= oo@
X .

 him [
b—00 1 X

. b
lim In x]l
b—>C0

lim (Inb —Inl) = 0.
b—00



> =

Area = 2 — 2Va

FIGURE 8.21 The area under this curve
18

1
. 1
> 11m+/ (—)dx—Z,
1 * a=0"Ja \V/x

an improper integral of the second kind.



DEFINITION  Type II Improper Integrals

Integrals of functions that become infinite at a point within the interval of inte-
gration are improper integrals of Type I1.

1. If f(x) is continuous on (a, ] and is discontinuous at a then

b b
ff(x)dx= l_i)m+/ f(x) dx.

2. If f(x) is continuous on [a, b) and is discontinuous at b, then

b c
/f(x)dx= 11,“;/ f(x) dx.

3. If f(x) is discontinuous at ¢, where a < ¢ < b, and continuous on
[a, ¢) U (c, b], then

b c b
ff(x)dx=/ f(x)dx+/ f(x) dx.

In each case, if the limit is finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-
gral diverges.




>

> X

FIGURE 8.22 The limit does not exist:

! b
/( )dx=lim/ dx = 00
o \I —x b—>1"Jo 1 —x

The area beneath the curve and above the
x-axis for [0, 1) 1s not a real number

(Example 4).




_ 1
Y x — )23
FIGURE 8.23 Example 5 shows the
convergence of
P
/ —dx =3 + 3V2,
0o (x—1)¥
; 3 »x  so the area under the curve exists (so it is a
C

- | < real number).



FIGURE 8.24 The calculation in
Example 7 shows that this infinite horn
has a finite volume.



FIGURE 8.25 The graph of e™ lies
below the graph of e ™ for x > 1
(Example 9).



THEOREM 1  Direct Comparison Test
Let f and g be continuous on [a, o©0) with 0 = f(x) = g(x) for all x = a. Then

1. / f(x)dx  converges if f g(x)dx  converges

o0 o
2. / a(x) dx diverges if f f(x)dx diverges.
a a




THEOREM 2  Limit Comparison Test
If the positive functions f and g are continuous on [a, ) and if

limM=L, 0 <L < o0,
x—>00 g(X)

/OO f(x) dx and foog(x) dx

both converge or both diverge.

then




101S 11

FIGURE 8.26 The funct

Example 11.



Types of Improper Integrals Discussed in This Section

INFINITE LIMITS OF INTEGRATION: TYPE I
1. Upper limit

2. Lower limit

¢ dv _ O _dx
o1 +x2 a—-oof, 1+ x2

3. Both limits

e O dx [ &
72— 111’1’1 72"1‘111’1'1 72
o 1 + x b—>-0f, 1+ x c— )y 1+ x

INTEGRAND BECOMES INFINITE: TYPE 1T
4. Upper endpoint

/'L: Hm/bL
o (x— D¥ =)o (x— 1)2P

y= G- DB

X
-

5. Lower endpoint

/3L= lim/3L
O S A R i

y
o1
y G-
1
X
o] 1 3

6. Interior point

/3 dx =/1 dx +/3 dx
o (x — 1?3 o (x — 1)%3 1 (x— 1)




—— e e e e g —— — — — . — — o — —

|
2

FIGURE 8.27 Euler’s gamma function
I'(x) is a continuous function of x whose
value at each positive integer n + 1 is n!.
The defining integral formula for I' is valid
only for x > 0, but we can extend I' to
negative noninteger values of x with the
formula I'(x) = (I'(x + 1))/x, which is
the subject of Exercise 49.



